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Abstract. Sentiment detection from text has been one of the first
text analysis applications. Recently it made serious progress with
using deep learning algorithms. Practical use of the sentiment
detection includes applications for monitoring the quality of cus-
tomer service. In this article we perform a review of established
and novel features for text analysis, combine them with the lat-
est deep learning algorithms, and evaluate the proposed models.
The issues we address are robustness to the low speech recogni-
tion rate, the variable length of the text queries, and the case of
imbalanced data sets. We use a large labelled dataset from real
support calls, and propose new optimality criterion, which is a
combination of weighted and unweighted accuracy.
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1. INTRODUCTION

Affective computing [1] is the art of recognizing emotions from various
modalities. It is widely growing within the field of Human Computer In-
teraction where speech remains a primary form of expressive communication.
Predominantly, speech emotion recognition systems are built to classify speech
utterances, which comprise of one dialog turn and typically range a few sec-
onds in duration, or 5-10 words in length. It is assumed that there is one
emotion in each utterance and the classification can be either categorical: into
discrete categories such as sadness, anger, happiness, neutral [2]; or contin-
uous: emotional attributes such as arousal (passive vs active), and valence
(positive vs negative) [3]. For analysis of customer service telephone calls the
classification happens only on the valence axis (positive, neutral, negative).
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Fig. 1. Typical architecture of a sentiment detection framework

Each classification is performed on one dialog turn, i.e. one utterance of cus-
tomer speech. Classifications from each of the utterances in the call are later
fused to form the final evaluation of the customer call. Typical architecture
of such multi-modal sentiment classification system from utterances is shown
in Fig. 1. The input audio utterance is sent to an Audio Sentiment Analysis
block, and to an Automatic Speech Recognition (ASR) block. The recognized
text is processed by a Text Sentiment Analysis block. The conclusions of these
two classifiers are fused and form the final classification. In this article we ex-
plore various features and classifiers for sentiment analysis based on a single
utterance of a customer call. It is extended version of our conference paper [4].
For processing the audio (Audio sentiment analysis), Deep Neural Networks
(DNNs) [5] are frequently used. The simplest DNN systems for emotion recog-
nition are feedforward networks of fully connected (FC) layers that are built
on top of the utterance level feature representations [6]. Recurrent Neural
Networks (RNNs) [7] are a class of neural networks that have cyclic connec-
tions between nodes in the same layer. These networks capture the inherent
temporal context in emotions and have shown improved performance for clas-
sification task [8]. Another class of DNNs, Convolutional Neural Networks
(CNNs) [9], capture locally present context, patterns, working on frame level
features. CNNs enable the training of end-to-end systems where the feature
representations and classification are trained together using a single optimiza-
tion [10]. Algorithms for sentiment detection from speech are out of the scope
of this article, but we will reuse some of the neural network architectures.
Emotion and sentiment detection from text (Text sentiment analysis) is
one of the first applications of text analysis. Initial papers were rule-based
algorithms, later replaced by bag of words (BoW) modeling using a large sen-
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timent or emotion lexicon [11], or statistical approaches that also assume the
availability of a large dataset annotated with polarity or emotion labels [12].
Word embedding [13] emerged as a powerful tool to map words with similar
meaning closer together. It also can be used to transfer the knowledge from
large numbers of unlabeled documents [14] to smaller labeled datasets, in the
context of sentiment analysis.

Analysis of text utterances using deep neural networks faces the problem of
different number of words in the utterance, while classifiers (SVM, FC DNN)
expect fixed number of input features. One approach is to extract utterance
statistics based on the word features a priori, and use the extracted statistics as
input to the classifier; alternatively, statistics can be extracted after individual
word classification and then combined into a final decision. A third approach is
to use models with an intermediate hold state, such as Hidden Markov Models
(HMMSs) or RNN.

Sentiment analysis from call center conversations faces additional set of
problems: the noise in the audio signal that harms both the audio-based
classification and the ASR; the need for speech diarization into customer and
agent speech; the need for robust text classifiers that overcome inevitable
ASR errors. Another aspect of the sentiment classification from audio and
text in real-life customer calls is that the collected and labeled datasets are
highly imbalanced, with neutral label dominating — typically above 90%. If we
train the classier on weighted accuracy (WA) we will have very poor results
for the positive and negative classes. Even worse, a classifier which outputs
always neutral already will have above 90% WA. If we train the classifier on
unweighted accuracy (UA) instead, then we will end up with a high absolute
number of neutral phrases misclassified as positive or negative, which is also
non-ideal.

In this article we explore various features and classifiers for sentiment detec-
tion from the output of ASR from real-life customer service calls. To address
the issue with the imbalanced dataset we propose a new cost function to train
the classifiers, which is a weighted sum of UA and WA. The article is structured
as follows. In Section 2 we describe the real-life dataset and the approaches
for labeling it. Section 3 covers the investigated feature sets, Section 4 — the
classifier architectures. We provide the experimental results in Section 5 and
we finish the article with discussion of the results and draw some conclusions
in Section 6.
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2. DATASET AND EVALUATION

The dataset is created from recorded Microsoft customer support calls for
a range of products and services. It consists of 1957 sessions in total. Each
conversation has been automatically segmented into utterances and separated
into agent and customer speech (although occasional mix-ups occur due to
crosstalk or processing glitches). An initial transcription pass is done auto-
matically, followed by a human transcription. For the purposes of our task,
we will use only the audio data from the customer side, with initial number
of 139,493 utterances.

2.1. Labelling

Each utterance is labeled for sentiment by three judges in the Microsoft
UHRS crowd-sourcing system. All judges must pass a qualifying test, scoring
at least 75% on “gold set” of pre-labeled utterances. Judges listen to the
entire conversation, one utterance at a time. Additionally, human-transcribed
text is presented on-screen for both current and context utterances (three
previous and three following). The context displayed includes both agent and
customer utterance. Each judge labels the utterance using one of the following
labels: clearly positive, somewhat positive, neutral, somewhat negative, clearly
negative, agent speech, not intended for service (side talk), cannot label.

2.2. Data selection

The data selection includes removing all utterances labeled agent speech,
not intended for service, cannot label; collapsing somewhat and clearly labels
together; leaving only the utterances where at least two of the judges agree. In
the final dataset we have 111,665 utterances left, with three labels: positive,
neutral, and negative. For each utterance we have noisy transcription (the
output of ASR) and exact transcription.

2.3. Dataset analysis

The overall judges’ agreement leads to UA of 84.85%. The labels distri-
bution is 93.01% neutral, 5.22% negative, and 1.77% positive as shown in
Fig. 2(a). The utterances contained between 1 and 97 words, where 95% of
them contained less than 18 words. The histogram of the utterances’ length
is shown in Fig. 2(b). More detailed analysis of the judges’ performance and
the dataset can be found in [15]. The dataset was split on training, validation,
and testing sets in proportion 80%—-10%-10%.
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Fig. 2. Dataset statistics and conversion from score to class: (a) distribution
of the labels; (b) number of words in utterance; (c) conversion from score to class

2.4. Evaluation parameters and cost function

Class labels were assigned in a way that emphasizes natural proximity be-
tween pairs of classes: -1 for negative, 0 for neutral, and +1 for positive. This
way the negative class is closer to neutral than positive. All classifiers ini-
tially act as regressors that estimate one score value; the score value is then
converted to a class membership using two thresholds as shown in Fig. 2(c).

The first evaluation parameter for the classifier is weighted accuracy (W A):

WA= —" 1)

where W A is the weighted accuracy, C'L is the total number of correct labels,
and N is the total number of labels. Note that a classifier that always returns
neutral achieves 93% W A on the imbalanced dataset.

The second evaluation parameter is unweighted accuracy (UA):

K
1 CLy
UA=— —_—
O (2)
k=1
where UA is the unweighted accuracy, Ny is the total number of labels in
class k = 1,..., K and CLy is the total number of correct labels in class k.

Given the three classes of the dataset, a classifier that always returns neutral
achieves 33% U A.

With W A as a cost function during training, the trained neural network will
tend to return mostly neutral, reducing the accuracy for the other two classes.
With U A as a cost function, we will have a very large absolute number of class
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neutral classified as one of the other two classes. This will make the manual
investigation of customer support calls more difficult and time consuming. To
address this issue, we propose using as a cost function the weighted sum of
the two accuracies:

Q=aWA+(1—a)UA—-0.001T}, (3)

where @ is the cost function, WA and U A are the weighted and unweighted
accuracies, in %, coefficient o denotes the tradeoff between U A and W A, and
T; is the classifier training time in seconds. The last member is a protec-
tion against classifiers with very long training time and minimal advantage in
accuracy.

The thresholds in Fig. 2(c) are determined as follows:

[Thl,Th2] = argmax (Qua1) , 4)
Th1,Th2

where Thl and Th2 are the thresholds, Q.4 is the cost function on the vali-
dation set.

3. FEATURES

The input for the feature extractor is a sequence of words with variable
length. The goal is to provide the classifier with the most informative for the
task set of features.

3.1. Statistical features

In this group are the classic for the field of computational linguistics n-
grams: uni-grams, bi-grams, and tri-grams [16]. Each n-gram is represented
as one-hot vector and we let the classifier learn which n-gram is carrying more
information about the utterance sentiment of a given class. The feature set
for the utterance is the sum of all one-hot vectors.

This feature set can be further augmented with information about the fre-
quency of the n-grams in the utterances of each class, which in information
retrieval is called TF*IDF (term frequency—inverse document frequency) [17].
In this case each n-gram is represented by a sparse vector with length the
number of n-grams in each class and as many different than zero numbers as
classes we have, containing the TF*IDF number of the n-gram for each class.
Ilustration of the frequency of different words in different classes is shown in
the word clouds in Fig. 3.
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Fig. 3. Word clouds for the three classes in the training set:
negative (left), neutral (center) and positive (right)

One of the problems in the statistical features is out-of-vocabulary (OOV)
n-grams or TF*IDFs, which are not presented in the training set, but seen
in the test and/or validation dataset. Both n-grams and TF*IDF features
are frequently referred to as bag-of-words (BoW) features as they do not keep
track of the sequence, i.e. the position of the n-gram in the utterance is not
accounted for.

3.2. Embedded features

Word embedding represents each word as a long vector, i.e. as a point in
a large dimensional space. Because of the way this vector is derived [13] the
words with similar meaning are close together. Even more, in this space king-
man+woman is very close to queen. For sentiment detection from text we can
use embedded vectors pre-trained on a large data corpus, such as the 16 billion
documents dataset in [14]. The probability of OOV words will generally be
small, but the word embedding is language dependent and will not be domain
specific.

A second approach is to train the word embedding on the words in the
training set. In this case the embedded space will be domain-specific, but we
can have increased number of OOV words in the validation and test datasets.

Third approach is to train the embedding jointly with the sentiment clas-
sifier. Then in the embedded space words informative for a given class will be
closer together. The problem with OOV words will still be present.

We can use the word embedding vectors as a sequence, or compute statistics
across all the word embeddings in the utterance: mean, max, min, standard
deviation.
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4. CLASSIFIERS

Most of the classifiers expect fixed length input, while the number of words
in a customer utterance can vary significantly. This means that we either have
to do some statistical processing of the features before the classifier, or to do
classification of each word and then do statistical processing of the outputs,
or use classifiers that carry a state from word to word and output the final
conclusion at the end of the utterance. For sentiment detection the output
of the classifier is a score, which is converted to class decision as described in
Section 2.4.

4.1. Fixed input length

The potential feature sets for these classifiers is the BoW group. There are
multiple classifiers, described in the literature, but in this article we limit the
scope to two: Extreme Learning Machine (ELM) [18] and feed forward fully
connected (FC) neural network frequently referred to simply as DNN [5]. The
first is simple to train and slightly outperforms on the task all the traditional
classifiers like support vector machines (SVM). The second classifier can be
made enough deep to have substantial abstraction power and the performance
usually is limited by the size of the available dataset.

4.2. Classifiers with state

In this group we experiment with Long-Short Term Memory (LSTM) [19]
classifiers, which are in the group of RNN. The LSTM classifiers process the
input features consecutively and account for the order of the input vectors.
They also preserve internal state and output the decision at the end of the in-
put sequence. LSTM classifiers perform better than the traditional HMM [20].
In addition, an LSTM-based neural network can have more than one LSTM
layer.

4.3. Hyper-parameters optimization

Each neural network has hyper-parameters, describing the architecture:
number of layers, number of neurons in each layer, etc. The classification
accuracy depends on these hyper-parameters and on the dataset. All of the
results in this article are presented after a formal process of hyper-parameters
optimization, using the cost function, defined in equation (3), as optimization
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criterion. The optimization space is small, and the optimization is carried iter-
atively, one hyper-parameter at a time. This is known as Gaussian minimiza-
tion. For each of the single dimensional optimization procedures a scanning
method is used with eventual quadratic interpolation.

5. EXPERIMENTAL RESULTS

We present the results in three main parts: using BoW as features, using
word embedding as features, and exploring the effect on the speech recognition
errors. All the classifiers are implemented in MATLAB using the Text Analyt-
ics toolbox. Criterion (3) is used for optimization, where a = 0.5. The training
times, mentioned in the results, are measured on a Windows computer with
12-core, 3.6 GHz, 64-bits CPU and 128 Gbytes of RAM. The GPU is NVIDIA
GeForce GTX980Ti. All the design decisions and algorithmic performance
ranking were based on performance achieved on the validation dataset. The
performance numbers from the test set are provided as evidence for the gen-
eralization of the proposed approaches.

5.1. Using bag of words as features

The numerical results from various neural networks using BoW features
are provided in Table 1. We use as features uni-grams, bi-grams, tri-grams
and all of them simultaneously. A separate experiment is done using TF*IDF
features. The two neural networks we experimented with are ELM and DNN.
Column Notes describes the architecture of the neural network: the number of
hidden layers (hl) and the number of neurons in each layer (hu). As expected,
the fully connected deep neural network performs better than ELM with its
single hidden layer. The combined feature set of 1-, 2-, and 3-grams provides
the highest performance on the validation dataset, achieving @) = 75.63. This
is the model that achieves the highest UA = 64.22%. Worth mentioning the
performance of the same neural network using uni-grams with ¢ = 75.08 and
the ELM performance with uni-grams as features and @ = 74.80. The good
performance of the uni-grams as feature can be explained with the lower num-
ber of OOV uni-grams, compared to bi-grams and tri-grams. It is reasonable
to expect that with larger datasets the combined use of all three features will
perform even better. The results from the test set confirm the good general-
ization and have similar ranking.

Engineering Sciences, LVII, 2020, No. 2 11



GEPL|€F°8G| 2206 | NY 081U 007 |FF L] 0692 |24°6S| 7968 | IS®l ‘DAFINLST Apyurol paureay Surppaquiyg
€CFL|GS8C| 1668 | N 96z qud 00 | 68°CL | 0°LVL | 708G | €268 | 1S®l ‘DAHINILST 8498 [eA+-UTRI) josejep 1o
9G'¢L| €27 LG| 8868 | NY 96z‘que 00g | 89°CL|0°TCL|6S LS| LT 68 | ISBl ‘DAFINLST 108 uresy poureI}-o1
GV9L|80°€9 [ 9L°68 | MY OSF qU© 00 | 0LFL |0 T6C | ST T9| 0888 |INTHA+S¥eIs+INILST oouonbos e se spiom
CEOLILYEY | LT°68 | MY OGT'qU 00¢  |[P6°FL|0°€€T [8T°29] 91°88 | 3s® ‘DAFINLST sSurppoquio q91 uo
G8'GL| T6°G9 | 6.°G8 |NY 009°TY £'quid 00| 99°€L | 0°0ES | 68°€9 | 8778 NNd A9D)S ‘XUl ‘UMW | POUTRI}-DI]
LEFLI90°6S | 89°68 | Ny 69zs'quie 00¢ | 8¢ 'L | 07691 | €295 | L9°'88 IN'TH UROUIL ‘SPIOM # :87e)S
O 1%'VN[%' VM O 998 ‘LI%VN|% VM
Jo8 me,H mOaOZ Jo8 QOB@@S@\/ HomﬁmmdﬁO mo.:ﬂdorm wgﬁﬁﬁoﬂam
moiﬁ%o.w Sse wgﬁﬁﬁoﬂao U.HO.\S ,HO.% mﬁﬂmom °C @—n—ﬁ“_u

8G'9L | 94729 | OV06 | MUOGT ‘U¥ | GO¥L | L2€T | €€°09 | #9768 AdT«AL

PILL | €099 | $PO'S8S | NUZICIUE | €9°GL | 9IGT | TTH9 | L8 | sweis-¢ pue ‘-z ‘-]

IT%9 | 16%¢ | 1€€6 | NUSZI TUC | 16°€9 ¢ eece | 0926 surea3Ly NNA

6769 | ¢T'9% | S8°¢6 | NUFZOT TU¥ | 97’89 | 0°CF8 | 68°9F | CL'T16 sureIsiq

0z'LL | 2679 | 8768 | Ny 008 TU E | 80°GL | 0°GEE | 6729 | €88 sureIsrun

0CFL | 928 | €106 ny 000% IT€L | GLT | 199 | 8968 AdT«AL

6CFL | 0065 | LE68 ny 000% VeEL | 0TeT | 8L°8G | GI'S88 | sweisS-g pue ‘-z ‘-[

66°€9 | GLTE | €C€6 ny 000g z8°€9 ee 60°¢E | 9976 sureasLy IN'TH

86'89 | ¥6'C¥ | ©0'C6 ny 099 Te'89 | T6ST | ¢6'SY | FO'I6 SureIsiq

6SFL | 6809 | 6828 ny 0051 08'%L | G8T | ¥L19 | 6828 sure1srun

O | %vn | %vm O 980 | %'V0 | %'VM
198 1897, S9JON 198 UOIJRPI[RA soanjeo IoISse)

SeIN9)edJ Sk SPIoM-JO-3eq 10] SYNsoYy T O[qel,

Engineering Sciences, LVII, 2020, No. 2

12



5.2. Using embedding as features

Table 2 shows the results from the experiments with word embedding.
Again, the Notes column gives information about the neural network archi-
tecture.

The first group of experiments uses a pre-trained word embedding on 16
billion documents in American English. This drastically reduces OOV words.
As the utterances have different length, in one of the cases we take statistics of
the embedding vectors with length of 300: mean, max, min, standard deviation
and add as additional feature the number of the words in the utterance. These
1201 features from each utterance are the input of two fully connected neural
networks: DNN and ELM. Another approach is to treat the embedding vectors
as a sequence of 300 features and use an LSTM network as a classifier. In
one of the cases we have an additional fully connected layer at the LSTM
output, in another we collect the LSTM outputs after each word. In the second
case at the end of the utterances we do statistics as above (mean, min, max,
standard deviation, number of words) and finalize the decision using ELM
neural network. These two approaches perform well, with slight advantage
of the classic LSTM and FC after the output. It achieves Q = 74.94 and
UA = 62.18%.

A second group of experiments is with word embedding trained either on the
training set or trained on the joint training+validation sets. The advantages
here are that the embeddings are domain specific, the disadvantages — the
dataset is small (less than a million words). The best performing classifier
from the previous group of experiments was used (LSTM+FC, last), but in
general this group has lower results than the first one.

The last experiment is to train the classifier and embedding jointly. In
this case the embedding vector caries information about how much this word
belongs to a given class. The used classifier is again LSTM+FC and this is
the third best performing configuration using word embedding. It does not
require a language specific pre-trained word embedding and does not depend
on the quality of such pre-trained embedding. The price for this is minimal hit
in the performance, which can be mitigated with a larger dataset. From this
standpoint the third approach is the winner of the classifiers using embedding
as features.

5.3. Impact of the speech recognition errors

The impact of speech recognition accuracy is explored in Table 3. We
perform training and evaluation of the three best performing algorithms us-
ing: (i) the ASR output, and (ii) the exact human-written transcription. For
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convenience, the results using the ASR output are copied from the previous
two tables. The Delta column shows the increase of the performance on the
verification set when using the exact transcription. Using the exact tran-
scription shows an expected increase in accuracy, between 4-6%. The highest
performance of () = 80.61 is achieved with the combination uni-grams and
DNN, while using all n-grams with DNN achieves highest @ = 73.51. Note
that for clear comparison we use the network architectures, optimized for the
ASR output. It is highly probable that an optimization of the neural network
architectures for the exact transcription will achieve even higher performance.

6. DISCUSSION AND CONCLUSIONS

In this article we explored various feature representations and classifiers for
the task of sentiment detection from speech transcription. We proposed the
use of a cost function that accounts for both WA and UA via equation (3),
aiming to mitigate highly imbalanced training dataset. A tradeoff coefficient
of a = 0.5 was proposed. Figure 4 shows the dependency of the WA and
U A on this parameter, for DNN classifier using all n-grams as features. The
trends for other combinations of features and classifier are quite similar. When
a = 1.0 we have WA = 94% and UA = 42%. When the coefficient is moved
to the other extreme, a = 0.0, then weighted accuracy goes down to 67% and
unweighted accuracy goes up to 69%. Seems that using a = 0.5 provides a
good tradeoff between the weighted and unweighted accuracy, where we have
most of the gain in unweighted accuracy (up to 64%), without losing much
from weighted accuracy (down to 87%).

nGramsAllI-DNN Mixed Accuracy (Eval), UA=63.8%, WA=87.4% nGramsAll-DNN ROC (Eval), EERP=31.4%, EERn=46.2%
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Another aspect of the proposed algorithm is to use the classifiers in re-
gression mode and estimate a value ranging from —1 (negative), through 0
(neutral), to +1 (positive). This introduces the concept that negative is closer
to neutral than to positive, but also allows applying of two separate thresh-
olds to adjust individually the false positive and false negative rates for the
negative and positive classes. The ROC curves for these two classes are shown
in Fig. 5. It is well visible that the classification error is much lower for the
positive class, than for the negative class. Customers are typically polite and
express verbally when they are satisfied but can be less clear in their words
when the result is not satisfactory.

In terms of robustness to ASR errors, the analysis of various features and
network architectures revealed that 1-, 2-, and 3-grams as features and a DNN-
based classifier were the best choice. It is closely followed by the same classifier
using just uni-grams, and using pre-trained word embedding as a sequence and
LSTM classifier.

In our experiments the traditional classifiers are represented by the ELM,
which performs close, but better than pretty much all of them. The proposed
algorithms outperform the ELM based classifier with 5-7% in UA for word
embedding features and 2-6% in UA for n-gram features.

The logical next step is to combine the results from both audio-based and
text-based classifiers. Since the feature rate is different between audio (frames
every 20 ms) and text (words on the output of ASR), a late fusion of the two
models would be suitable for combining the outputs into a single decision.
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